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Abstract

Background: Serum levels of branched-chain amino acids (BCAAs) 
are associated with various vital physiological functions and thus el-
evation in circulating levels results in several metabolic disturbances. 
Serum levels of BCAAs are strong predictors of various metabolic 
disorders. Their association with cardiovascular health is uncertain. 
The study aimed to investigate the association of BCAAs with circu-
lating levels of vital cardiovascular and hepatic markers.

Methods: The study population of 714 individuals was included from 
the population tested for the vital cardio and hepatic biomarkers at the 
Vibrant America Clinical Laboratories. The subjects were stratified 
into four quartiles based on the serum levels of BCAAs, and their 
association with vital markers was studied using the Kruskal-Wallis 
test. Pearson’s correlation analyzed the univariant relationship of 
BCAAs with selected cardio and hepatic markers.

Results: BCAAs exhibited a strong negative correlation with serum 
HDL. Serum triglycerides were found to have a positive correlation 
with serum levels of leucine and valine. Univariant analysis exhibited 
a strong negative correlation between serum levels of BCAAs and 
HDL, and a positive correlation was observed between triglycerides 
and amino acids isoleucine and leucine. Among analyzed hepatic 
markers, alanine transaminase exhibited a considerable association 
with BCAAs.

Conclusions: The elevated levels of serum BCAAs are strongly asso-
ciated with serum HDL and triglycerides. Consumption of these sup-
plements must be in coordination with healthcare providers to avoid 
metabolic and cardiovascular risk.

Keywords: BCAAs; HDL; Isoleucine; Valine; Leucine; Cardiovas-
cular disorder

Introduction

Chronic metabolic diseases such as cardiovascular diseases 
(CVDs), arteriosclerosis, chronic heart failure, and diabetes 
are the major causes of morbidity and mortality in the general 
population. The prevalence of cardiometabolic and CVDs has 
increased in the last few decades due to significant various an-
thropological and behavioral changes [1, 2]. Reduced physical 
activity, decreases in the sleep cycle, and the introduction of an 
energy-dense and palatable diet are the major reasons for these 
diseases [3]. Diabetes is the most chronic disease and is strong-
ly associated with various cardiovascular complications which 
tend to increase in epidemic proportion in recent decades. 
Metabolic diseases are characterized by altered levels of vital 
metabolites [4]. For instance, reduced high-density lipoprotein 
(HDL) and elevated triglycerides result in the development of 
insulin resistance with metabolic syndrome. Elevated levels of 
circulating low-density lipoprotein (LDL) also represent the 
most vital cardiovascular risk factor. Several studies have re-
ported the positive correlation of branched-chain amino acids 
(BCAAs) with various metabolic disorders including diabetes 
and its linked CVDs [5, 6]. Various experimental studies have 
been put forth to understand the underlying interrelated pathol-
ogy of diabetes-linked CVDs. A study on plasma metabolite 
profiling using high-throughput technologies demonstrated the 
strong association of aromatic amino acids and BCAAs with 
type 2 diabetes.

BCAAs (isoleucine, leucine, and valine) are a class of es-
sential amino acids with an aliphatic side chain and are vital 
for regulating various physiological functions in the human 
body [7]. The circulating levels of BCAA have been observed 
to have a consistent association with diabetes, and dysfunc-
tional BCAA amino acids result in the development of cardiac 
insulin resistance, thereby the development of type 2 diabe-
tes. Studies have proved that dysfunctions in the metabolism 
of BCAA result in poor cardiometabolic health, and several 
cross-sectional studies have proved the association of BCAA 
with several cardiometabolic risk factors such as insulin resist-
ance impaired fasting glucose, elevated blood pressure, and 
other risk factors of coronary artery disease [5, 8, 9]. Cross-
sectional studies have failed to explain the underlying mecha-
nism of BCAA-associated CVD. To overcome this limitation, 
a few prospective studies have reported the role of BCAA in 
CVD. The elevated serum levels of BCAA result in increas-
ing the serum levels of triglycerides. Another cross-sectional 
study reported that despite increasing the levels of triglycer-
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ides, BCAA also tends to decrease the circulating levels of 
HDL [10]. Studies have reported no correlation between serum 
BCAA and LDL, but an in vitro study by Halama et al [11] 
reported the biosynthesis of cholesterol from the byproducts 
of leucine. Excessive consumption of BCAA and the result-
ing increase in the circulating levels of BCAA may affect the 
transportation of tryptophan to the brain and inhibit serotonin 
synthesis [12]. In vivo, studies have proved the role of BCAA 
in the regulation of appetite and increased obesity. However, 
there was no clear consensus on the correlation of BCAA with 
vital cardiovascular markers.

We, therefore in the present study, aimed to evaluate the 
association of BCAA on the serum levels of various vital car-
diovascular and hepatic markers. A retrospective analysis was 
carried out to evaluate the interrelationship of serum BCAA 
with lipid and hepatic markers.

Materials and Methods

Study design

This study was a retrospective study based on clinical data. 
The study population of 714 individuals was recruited from the 
population tested for the vital cardio and hepatic biomarkers at 
the Vibrant America Clinical Laboratories.

Ethical compliance

The study was carried out in deidentified clinical samples, 
hence exempted from formal ethical clearance. IRB exemp-
tion (work order #1-1098539-1) was determined by the West-
ern Institutional Review Board (WIRB) for Vibrant America 
Biorepository to use delinked and deidentified remnant human 
specimens and medical data for research purposes. The study 
was conducted in compliance with the ethical standards of the 
responsible institution on human subjects as well as with the 
Helsinki Declaration.

Determination of serum biomarkers and amino acids

Blood samples were drawn and processed for the separation 
of serum. Serum levels of total cholesterol were determined 
by an enzymatic assay catalyzed by cholesterol dehydrogenase 
and estimated by the Beckman Coulter AU680 analyzer. Par-
ticle enhanced immunoturbidometric assay was followed to 
estimate the serum levels of apolipoprotein A1 (ApoA1), Apo 
B, and lipoprotein (a) (Lp (a)) using a Roche Cobas 6000 C 
501 analyzer. The enzyme-based colorimetric assay was used 
to measure the serum levels of LDL, HDL, and triglycerides 
via the Beckman Coulter AU680 analyzer. An electrochemi-
luminescence immune assay was used for the determination 
of N-terminal pro-B-type natriuretic peptide (NT-proBNP). 
The assay is based on the interaction between the antigen (NT-
proBNP), a biotinylated monoclonal antibody, and a rutheni-
um-labeled monoclonal antibody specific to NT-proBNP. Total 

serum homocysteine levels were estimated by in vitro quan-
titative enzyme-linked immunosorbent assay using Beckman 
Counter AU series analyzers. The serum level of homocysteine 
is measured as the inverse of the amount of NADH converted 
to NAD + which can be measured at 340 nm. The quantita-
tive estimation of oxidized low-density lipoprotein (oxLDL) is 
based on the direct sandwich technique which uses two mono-
clonal antibodies specific to antigenic determinants on the oxi-
dized apolipoprotein B. The reaction is based on the reaction 
between the oxidized LDL in the serum with anti-oxidized 
LDL antibodies, the reaction is monitored spectrometrically at 
450 nm. Serum myeloperoxidase was determined by a latex-
enhanced immuno-turbidimetric assay based on antigen-anti-
body interaction. The myeloperoxidase (MPO) in the serum 
binds to a specific anti-MPO antibody coated on the latex. This 
causes agglutination and the turbidity of agglutination is di-
rectly measured as the concentration of MPO in the serum. The 
in vitro quantification of lipoprotein-associated phospholipase 
A2 (Lp-PLA2) is an enzymatic assay based on the hydrolysis 
of the sn-2 position of the substrate and produces a colored 
end product 4-nitrophenol. The change in the absorbance with 
the production of 4-nitrophenol is measured as the Lp-PLA2 
activity.

The hepatic markers comprised vital liver enzymes such 
as alkaline phosphatase (ALK), aspartate transaminase (AST), 
alanine transaminase (ALT), and other hepatic markers such as 
albumin, total bilirubin, and total protein.

The presence of AST was determined by a two-step en-
zymatic reaction, the reaction is catalyzed by the transfer of 
amino group between L-aspartate and 2-oxoglutarate result-
ing in the formation of oxaloacetate and L-glutamate. The 
oxaloacetate is further oxidized into NADH in the presence 
of malate dehydrogenase to form NAD. The catalytic AST is 
given as the oxidation rate of NADH which is measured as the 
decrease in the absorbance.

The catalytic activity between L-alanine and 2-oxoglutar-
ate determines the enzyme activity of ALT. L-lactate and NAD 
are the end products of pyruvate reduction by NADH cata-
lyzed by lactate dehydrogenase. The catalytic activity of the 
ALT is directly used to quantify the rate of oxidation, and the 
drop in absorbance is used to measure the rate photometrically.

The ability of phosphatases to cleave p-nitrophenyl phos-
phate onto phosphate and p-nitrophenol in the presence of 
magnesium and zinc is used to quantify ALK. The rise in ab-
sorbance, which is a measure of enzyme activity, is directly 
proportional to the amount of p-nitrophenol emitted.

The formation of a blue-green complex between anionic 
bromocresol green and cationic serum albumin at an optimal 
pH of 4.1 allows for the measurement of albumin levels in se-
rum. The concentration of albumin can be determined directly 
from the blue-green complex’s color intensity. The serum bili-
rubin readily solubilizes and produces a red azo dye complex 
with 3,5-dichlorophenyl diazonium in a colorimetric diazo 
technique used to measure total bilirubin. The complex’s color 
intensity is measured photometrically and is inversely corre-
lated with the total bilirubin concentration. Divalent copper, 
which combines with the protein peptides to generate a distinc-
tive purple biuret complex, can be used to measure the overall 
protein concentration. The color intensity of the complex is 



Articles © The authors   |   Journal compilation © Cardiol Res and Elmer Press Inc™   |   www.cardiologyres.org 169

Krishnamurthy et al Cardiol Res. 2023;14(3):167-175

directly proportional to the concentration of protein.
Waters TQ-XS tandem mass spectrometer coupled with 

liquid chromatography mass spectrometry (LCMS) was used 
to determine the serum levels of BCAA.

Statistical analysis

The retrospective analysis of the clinical data was performed 
via Java for Windows version 1.8.161. The obtained data 
were stratified into four quartiles based on the cut-off points 
at the 25th, 50th, and 75th percentile values of serum levels 
of BCAA. The univariant relationship of BCAA with selected 
cardio and hepatic was analyzed by Pearson’s correlation with 
significance set at P < 0.05. GraphPad Prism version 7.00 was 
used to perform statistical analysis, and descriptive statistics 
were used to express the continuous variables (mean ± stand-
ard deviation (SD), median, minimum, and maximum)

Results

The current research aimed to study the association of BCAAs 
with circulating levels of vital cardiovascular and hepatic mark-
ers. The cardiovascular panel comprised all vital lipid markers 
such as total cholesterol, LDL, HDL, triglycerides, ApoA1, 
ApoB, Lp (a), NT-proBNP, small dense LDL (SDLDL), ox-
LDL, high-sensitivity C-reactive protein (hs-CRP), homo-
cysteine, myeloperoxidase, and Lp-PLA2. Where, the hepatic 
panel is comprised of vital liver markers such as ALT, AST, 
total bilirubin, total protein, albumin, and ALK (Table 1).

The study comprised 714 individuals with a mean age of 
48.2 ± 16.0, and the subjects were stratified into four quartiles 
based on the serum levels of BCAA (isoleucine: 464.2 ± 23.1, 
leucine: 161.3 ± 34.5 and valine: 247.9 ± 58.4) (Fig. 1). Among 
all the biomarkers tested the circulating levels of HDL were 
found to have a significant negative trend with an increase 
in the serum levels of all three BCAAs. ApoA1 was found to 
have a considerable negative trend with increasing isoleucine, 
whereas homocysteine showed a considerable positive trend 
toward increasing levels of isoleucine (Table 2). NT-proBNP 
and alanine transferase were also found to be weekly associat-

ed with increasing levels of serum isoleucine (Table 3). Serum 
HDL and ApoA1 exhibited a strong inverse trend with increas-
ing serum leucine. Whereas other lipid markers triglycerides, 
SDLDL, homocysteine, and lipoprotein-associated phospho-

Table 1.  Baseline Properties of the Study

Biomarker Mean ± SD
Gender (n = 714)
  Male 47.22 ± 16.88
  Female 49.34 ± 16.59
Cardiac markers (mg/dL)
  Cholesterol 182.5 ± 43.04
  High-density lipoprotein 57.51 ± 17.29
  Triglyceride 92.22 ± 61.68
  Low-density lipoprotein 115.7 ± 38.75
  Apolipoprotein A1 165.1 ± 37.4
  Apolipoprotein B 92.19 ± 25.73
  Lipoprotein (a) 37.45 ± 39.97
  N-terminal pro-B-type natriuretic peptide 93.37 ± 238.5
  Small dense LDL 28.49 ± 11.69
  High-sensitivity C-reactive protein 2.436 ± 6.864
  Homocysteine 9.655 ± 3.617
  Oxidized LDL 44.44 ± 19.35
  Myeloperoxidase 1102 ± 929.2
  Lipoprotein-associated phospholipase A2 163 ± 43.13
Hepatic markers (U/L)
  Alanine transaminase (ALT) 26.05 ± 38.1
  Aspartate transaminase (AST) 27.51 ± 38.04
  Total bilirubin 0.5558 ± 0.318
  Total protein 7.154 ± 0.5635
  Albumin 4.686 ± 0.418
  Alkaline phosphatase (ALK) 73.58 ± 32.23

SD: standard deviation; LDL: low-density lipoprotein.

Figure 1. The 25th, 50th, and 75th percentiles were used as cut-off points to stratify participants according to the plasma levels 
of individual BCAAs. HDL: high-density lipoprotein; BCAAs: branched-chain amino acids.
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lipase 2 exhibited a strong positive trend with increasing se-
rum leucine. Among analyzed hepatic markers, ALT exhibited 
a strong positive trend towards an increase in serum leucine. 
Serum levels of valine were found to have a negative correla-
tion with circulating HDL and ApoA1 levels. ALT exhibited a 
strong positive trend toward increasing serum valine (Table 4). 
Serum levels of homocysteine, oxLDL, Lp-PLA2, AST, and 
albumin were also found to be weakly associated with valine 
concentrations.

Quantitative analysis by Pearson correlation exhibited 
the distinct correlation of the vital biomarkers with the serum 
levels of BCAAs. A strong negative correlation was observed 
between serum levels of HDL and all three BCAAs (Figs. 2-4). 
Where in the case of triglycerides a strong positive correlation 
was observed between isoleucine (r = 0.15, P < 0.0001) and 
leucine (r = 0.16, P < 0.0001). ApoA1 was found to have a 
strong negative correlation with leucine (r = -0.23, P < 0.0001) 
and valine (r = -0.16, P < 0.0001). Amino acids isoleucine (r 
= 0.10, P < 0.01) and leucine (r = 0.09, P < 0.02) were found 
to be positively correlated with serum homocysteine. Inter-
estingly no significant correlation was observed with hepatic 
markers (Table 5). However, total bilirubin and albumin were 
found to exhibit a zero-correlation suggesting the rejection of 
the null hypothesis.

Discussion

The primary objective of the study is to investigate the asso-
ciation between circulating levels of BCAAs and vital cardio 
markers. The study also attempted to discover the proximity 
of serum BCAAs as a biomarker in the early detection of fu-
ture cardiovascular events. Several metabolomic studies have 
reported a wide class of untargeted metabolites related to lipid 
metabolism, amino acid, and fatty acid metabolism associated 
with various CVDs. Among nine human essential amino acids, 
BCAAs (leucine, valine, and isoleucine) were found to have 
high discrimination capability in serum and various genetic 
and protein analyses [13]. Studies have reported that failing 
hearts with the accumulation of BCAAs in serum results from 
the downregulation of BCAA metabolism [14].

Various reports in the last decade have yielded crucial in-
sights that are reshaping our understanding of the systems physi-
ology of BCAA metabolism and the molecular mechanisms un-
derlying the close relationship between BCAA homeostasis and 
cardiovascular health [15]. Several patient-based studies have 
shown that disturbances of BCAA metabolism are associated 
with multiple CVDs, including coronary artery disease, myocar-
dial infarction, and heart failure [16]. However, the exact molec-

Table 2.  Quartiles of Serum Levels of Isoleucine

Isoleucine quartile range
Q1 (< 47) Q2 (48 - 62) Q3 (63 - 79) Q4 (> 79) P valuea

N 179 178 178 178
Cholesterol 184.8 ± 40.9 182.8 ± 43.5 185.5 ± 44.5 177.1 ± 42.9 0.4425
High-density lipoprotein 60.96 ± 18.7 60.08 ± 17.0 57.09 ± 16.5 51.88 ± 15.4 < 0.0001
Triglyceride 88.0 ± 43.9 84.4 ± 43.6 89.5 ± 47.6 106.9 ± 94.2 0.0223
Low-density lipoprotein 118.8 ± 39.8 114.3 ± 39.1 116.9 ± 39.8 112.7 ± 36.1 0.7016
Apolipoprotein A1 168.2 ± 37.5 168.6 ± 38.9 166.9 ± 37.3 156.5 ± 34.6 0.0117
Apolipoprotein B 93.4 ± 26.1 90.8 ± 25.1 94.0 ± 27.2 90.4 ± 24.1 0.6524
Lipoprotein (a) 43.1 ± 44.3 36.1 ± 39.3 31.6 ± 34.5 39.1 ± 40.7 0.2088
N-terminal pro-B-type natriuretic peptide 94.27 ± 195.8 119.3 ± 385.5 145.5 ± 925.3 84.45 ± 176.7 0.0007
Small dense LDL 27.6 ± 12.0 27.5 ± 10.3 29.7 ± 12.4 28.9 ± 11.8 0.1163
High-sensitivity C-reactive protein 2.1 ± 4.6 3.5 ± 11.2 1.7 ± 4.0 2.3 ± 4.9 0.5935
Homocysteine 9.2 ± 3.4 9.3 ± 3.5 9.4 ± 2.9 10.5 ± 4.2 0.0007
Oxidized LDL 46.01 ± 21.6 42.9 ± 18.1 43.3 ± 19.5 45.4 ± 17.6 0.3754
Myeloperoxidase 1,041 ± 852.6 1,061 ± 903.4 1,139 ± 923.7 1,167 ± 1032 0.9008
Lipoprotein-associated phospholipase A2 162.9 ± 45.9 160.6 ± 42.4 162.5 ± 43.5 165.9 ± 40.6 0.6616
Alanine transaminase (ALT) 25.8 ± 30.7 28.3 ± 66.3 22.4 ± 12.6 27.6 ± 17.2 0.0002
Aspartate transaminase (AST) 29.3 ± 52.9 28.0 ± 44.6 26.0 ± 28.9 26.5 ± 13.1 0.861
Total bilirubin 0.53 ± 0.26 0.57 ± 0.32 0.56 ± 0.35 0.55 ± 0.32 0.9263
Total protein 7.1 ± 0.52 7.1 ± 0.55 7.2 ± 0.63 7.0 ± 0.52 0.4228
Albumin 4.7 ± 0.4 4.6 ± 0.3 4.7 ± 0.4 4.6 ± 0.4 0.191
Alkaline phosphatase (ALK) 73.8 ± 26.6 69.7 ± 26.0 76.3 ± 34.3 74.4 ± 39.8 0.1666

aP values among the T-BCAA quartiles were obtained using the analysis of variance or the Kruskal-Wallis test. LDL: low-density lipoprotein; T-BCAA: 
total BCAA.
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ular mechanism remains elusive. Recent research has revealed 
molecular mechanisms behind BCAA catabolism in regulating 
cardiac metabolism and stress response [17].

BCAAs, especially leucine, are highly effective activators 
of mTOR signaling, which is directly implicated in cardiac hy-
pertrophy in the heart [18]. It has been suggested that increased 
BCAA levels in plasma or tissue activate the mTOR pathway, 
although independently of Tuberous sclerosis complex (TSC) 
regulation. Elevated BCAA levels could lead to persistent acti-
vation of mTOR followed by serine phosphorylation of insulin 
receptor substrate-1 (IRS-1) via S6 kinase (p70S6K) [15]. Re-
cent studies have suggested that leucine, a BCAA, is a key amino 
acid involved in mTOR activity and imparts cardioprotective ef-
fects. BCAAs selectively promote cardiac function through mul-
tiple mechanisms, including activation of mTOR [19]. In gen-
eral, BCAAs play several important metabolic and physiological 
roles, aside from being considered as substrates for the synthesis 
of proteins. Reports show that BCAAs act as signaling molecules 
regulating the metabolism of glucose, lipid, and protein [20].

In the present study, a strong statistically significant nega-
tive correlation was observed between serum levels of BCAAs 
and HDL. A positive correlation was observed between triglyc-
erides and amino acids leucine and valine. Moreover, our one-
way analysis of variance (ANOVA) also proves the coexistence 

between the increasing levels of BCAA with serum levels of 
HDL. The increase in the serum levels of all three BCAAs ex-
hibited a negative trend towards serum HDL. The current result 
is consistent with several previous reports. A report by Wang 
et al (2019) [21] indicated that elevated levels of BCAAs are 
directly associated with atherogenic diseases either by increas-
ing the serum levels of triglycerides or by decreasing the HDL. 
They also reported that the increase in threonine may reduce 
the risk of atherogenic diseases. A report by Yang et al in 2016 
[22] on metabolomic dyslipidemia in the Chinese Han popula-
tion also reported the increase in the serum concentrations of 
BCAAs is associated with both elevating levels of triglycerides 
and decreasing the levels of HDL. High BCAAs were also as-
sociated with the development of metabolic dyslipidemia and 
various other metabolic disorders including diabetes [23].

Numerous studies have reported the implications of elevat-
ed levels of metabolites in the development of cardiovascular 
and various metabolic disorders [24]. The current study deals 
with the health implications of elevated levels of serum BCAAs 
on atherogenic lipid profiles and other related cardiovascular 
disorders. The molecular interactions of BCAAs with the lipid 
mechanism remains certainly unclear. However various in vitro 
studies have demonstrated that impaired BCAA catabolism re-
sults in the accumulation of BCAAs [25, 26]. Chronic levels of 

Table 3.  Quartiles of Serum Levels of Leucine

Leucine quartile range
Q1 (< 137) Q2 (138 - 157) Q3 (158 - 186) Q4 (> 186) P valuea

N 179 178 178 178
Cholesterol 182.2 ± 39.6 183.8 ± 42.5 189.5 ± 47.2 174.8 ± 41.4 0.0161
High-density lipoprotein 62.9 ± 17.8 58.3 ± 17.1 57.3 ± 17.1 51.45 ± 16.5 < 0.0001
Triglyceride 83.78 ± 41.9 86.21 ± 41.9 90.34 ± 51.6 108.6 ± 93.3 0.0012
Low-density lipoprotein 109.6 ± 35.3 117.4 ± 40.1 122.8 ± 41.0 113.1 ± 37.3 0.0086
Apolipoprotein A1 176.5 ± 38.1 167.7 ± 34.3 163.3 ± 37.0 152.7 ± 36.2 < 0.0001
Apolipoprotein B 87.6 ± 23.0 92.9 ± 25.9 96.5 ± 27.8 91.6 ± 25.2 0.0151
Lipoprotein (a) 32.6 ± 32.7 42.8 ± 43.3 42.2 ± 47.8 32.0 ± 33.1 0.0849
N-terminal pro-B-type natriuretic peptide 121.1 ± 352.8 80.81 ± 112.2 106.4 ± 273.2 137.5 ± 946.7 < 0.0001
Small dense LDL 25.7 ± 9.4 28.02 ± 11.4 30.59 ± 13.2 29.57 ± 11.8 0.0004
High-sensitivity C-reactive protein 2.1 ± 4.8 2.3 ± 6.6 2.8 ± 9.9 2.3 ± 4.8 0.4858
Homocysteine 8.9 ± 3.2 10.0 ± 4.2 9.4 ± 3.2 10.1 ± 3.5 0.0003
Oxidized LDL 45.6 ± 19.5 43.1 ± 19.7 43.2 ± 19.0 45.8 ± 19.1 0.3837
Myeloperoxidase 1,113 ± 953.9 1,016 ± 819.9 1,063 ± 897.3 1,217 ± 1031 0.3047
Lipoprotein-associated phospholipase A2 149.9 ± 41.8 164.7 ± 41.1 170.7 ± 43.9 166.7 ± 42.9 < 0.0001
Alanine transaminase (ALT) 22.4 ± 19.4 23.2 ± 11.6 26.6 ± 29.0 31.8 ± 66.3 < 0.0001
Aspartate transaminase (AST) 24.6 ± 16.2 25 ± 9.2 30.5 ± 58.6 29.7 ± 44.7 0.0233
Total bilirubin 0.50 ± 0.27 0.54 ± 0.26 0.58 ± 0.31 0.59 ± 0.39 0.0209
Total protein 7.06 ± 0.51 7.1 ± 0.51 7.1 ± 0.52 7.2 ± 0.67 0.1506
Albumin 4.6 ± 0.37 4.6 ± 0.33 4.6 ± 0.42 4.7 ± 0.51 0.1036
Alkaline phosphatase (ALK) 73.17 ± 36.0 75.24 ± 36.6 71.37 ± 24.1 74.54 ± 30.5 0.2264

aP values among the T-BCAA quartiles were obtained using the analysis of variance or the Kruskal-Wallis test. LDL: low-density lipoprotein; T-BCAA: 
total BCAA.
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accumulated BCAAs result in the selective disruption of mito-
chondrial pyruvate utilization by inhibition of pyruvate dehy-
drogenase complex activity and also decreases glucose uptake, 
oxidation, glycogen content, and protein glycosylation. Elevat-

ed levels of BCAAs downregulate the hexosamine biosynthesis 
and inactivate pyruvate dehydrogenase.

BCAAs are human essential amino acids, which are the 
most vital among the nine essential amino acids. Overdose or 

Table 4.  Quartiles of Serum Levels of Valine

Valine quartile range
Q1 (< 207) Q2 (207 - 243) Q3 (243 - 285) Q4 (> 285) P valuea

N 179 178 176 180
Cholesterol 184.7 ± 43.7 182.8 ± 38.9 183.7 ± 44.0 179 ± 45.2 0.5521
High-density lipoprotein 62.77 ± 19.33 58.72 ± 17.3 55.38 ± 15.93 53.16 ± 14.85 < 0.0001
Triglyceride 83.69 ± 34.08 91.68 ± 51.51 90.65 ± 52.99 102.8 ± 91.31 0.0656
Low-density lipoprotein 112.2 ± 39.3 115.6 ± 36.5 119.6 ± 39.0 115.5 ± 39.8 0.1488
Apolipoprotein A1 174.7 ± 41.9 167.4 ± 37.1 160.3 ± 34.2 157.8 ± 33.4 < 0.0001
Apolipoprotein B 89.44 ± 25.5 91.88 ± 25.0 94.49 ± 25.8 92.99 ± 26.3 0.1266
Lipoprotein (a) 37.07 ± 39.2 37.53 ± 39.7 35.98 ± 37.7 39.27 ± 43.4 0.988
N-terminal pro-B-type natriuretic peptide 109.6 ± 338.2 96.8 ± 210.7 68.01 ± 93.8 168.2 ± 945.2 0.0139
Small dense LDL 27.1 ± 11.3 28.2 ± 11.2 29.7 ± 12.9 28.7 ± 11.1 0.1352
High-sensitivity C-reactive protein 3.1 ± 10.1 2.1 ± 5.0 1.9 ± 4.3 2.4 ± 6.2 0.1159
Homocysteine 9.13 ± 3.2 10.05 ± 4.0 9.5 ± 3.2 9.8 ± 3.8 0.0443
Oxidized LDL 47.02 ± 21.2 40.5 ± 18.3 46.7 ± 19.1 43.67 ± 18.0 0.008
Myeloperoxidase 1,085 ± 836.8 1,179 ± 1,083 1,123 ± 983.3 1,025 ± 796.1 0.94
Lipoprotein-associated phospholipase A2 152.9 ± 43.5 165.1 ± 43.5 167.9 ± 40.9 166 ± 43.1 0.0056
Alanine transaminase (ALT) 20.74 ± 14.4 27.46 ± 29.3 30.02 ± 66.3 26.06 ± 19.1 < 0.0001
Aspartate transaminase (AST) 24.03 ± 14.0 29.95 ± 51.8 28.68 ± 44.7 27.4 ± 30.1 0.0293
Total bilirubin 0.51 ± 0.26 0.55 ± 0.28 0.58 ± 0.36 0.56 ± 0.3 0.2668
Total protein 7.09 ± 0.56 7.2 ± 0.51 7.1 ± 0.55 7.1 ± 0.61 0.0795
Albumin 4.5 ± 0.44 4.75 ± 0.38 4.68 ± 0.33 4.71 ± 0.48 0.0162
Alkaline phosphatase (ALK) 72.22 ± 27.3 72.35 ± 31.9 78.74 ± 42.6 71.08 ± 23.7 0.3241

aP values among the T-BCAA quartiles were obtained using the analysis of variance or the Kruskal-Wallis test. LDL: low-density lipoprotein; T-BCAA: 
total BCAA.

Figure 2. Relationship between serum isoleucine and serum HDL. HDL: high-density lipoprotein.
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elevated serum levels of these amino acids are known to be 
implicated in the development of CVDs. It is also proven that 
BCAAs or their related metabolites are proven to be indepen-
dently associated with severe coronary artery disease. Several 
reports including the current study have reported the significant 
associations between BCAAs with triglycerides and HDL. Re-
ports have been limited in the case of BCAAs and their associa-
tion with hepatic markers. Adipose tissue being the main site for 
the interaction of BCAAs with lipid metabolites, whereas the 
liver seems to be another candidate organ for amino acid me-
tabolism [27]. BCAAs are oxidized extensively in extra-hepatic 
tissue and are known to be correlated with non-alcoholic fatty 
liver disease [28]. This may result in morbidity of insulin resist-
ance and the development of type 2 diabetes mellitus. BCAAs 
may also increase insulin resistance in hepatic cells. As a result 
of increased gluconeogenesis, altered hepatic glycogen export 
affects hepatic lipid homeostasis and results in the accumulation 
and deposit of triglycerides and other fatty acids. Although the 
significance of such a metabolic pattern has not been completely 
understood. The heart expresses the highest levels of enzymes in 
the BCAA catabolic pathway, but BCAA oxidation contributes 
to a very small fraction of energy production in the heart [25].

The study has a few limitations, such as the limited size 
of the study population. Additionally, since it’s a retrospective 
study possibility of multifactor adjustment of analysis is limited. 
However, our study has detailed the significant associations be-
tween BCAAs and various lipid markers along with vital hepatic 
markers. The wide use of BCAAs to improve the clinical indica-
tion of malnutrition has increased in recent years. This makes 
the need to monitor the serum levels of BCAAs important. To 
best of our knowledge, this is the first report to discuss the as-
sociations between lipid and hepatic markers with BCAAs.

Conclusions

In conclusion, our study demonstrates that an increase in in-
dividual or total serum BCAAs is inversely associated with 
HDL. Triglycerides, ApoA1, and alanine transferase exhibited 
a considerable association with serum BCAAs. These results 
present a potential rationale for the use of serum BCAAs as 
an effective biomarker for the diagnosis of various metabolic 
and cardiovascular disorders. Since BCAAs seem to modulate 
lipid and hepatic markers and are widely supplemented in the 

Figure 3. Relationship between serum leucine and serum HDL. HDL: high-density lipoprotein.

Figure 4. Relationship between serum valine and serum HDL. HDL: high-density lipoprotein.
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fitness industry further research is warranted to limit undesir-
able effects.
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